

MPO-2000 Multi-function Programmable Oscilloscope

Innovative Function **Diversity Application**

DSO · AWG · DMM · Power Supply Spectrum Analysis

Beyond Your Imagination

MPO-2000 Multi-function Programmable Oscilloscope

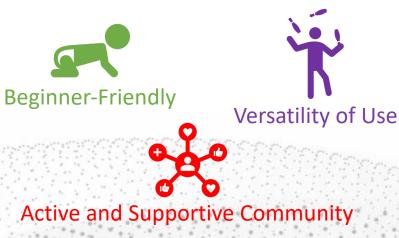
Bandwidth

Record Length Analog Channels Sample Rate

Waveform Update Rate

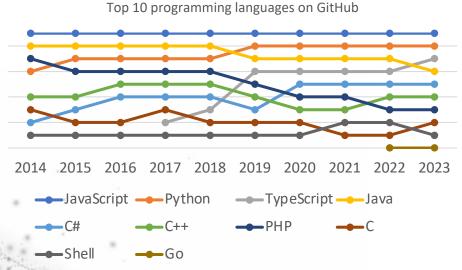
Up to **200** MHz **10** M points

Up to **1** GS/s Up to **120,000** Waveform/s

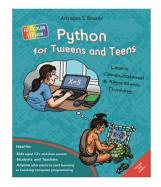

Python is hot!

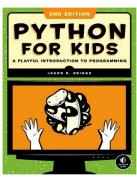
Why Python so popular?

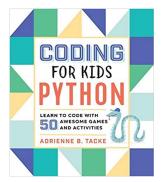
82 million programmers Estimated at least

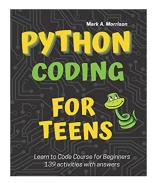

programming language From 2019~2023

Same result

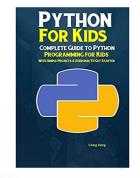

Python example

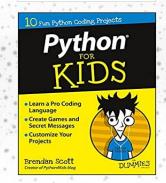

C example


```
Copy code
python
# Python
my_list = [1, 2, 3, 4, 5]
                                                                                                         Copy code
print(my_list)
                                            #include <stdio.h>
                                            int main() {
                                                // C
                                                int my_array[] = {1, 2, 3, 4, 5};
                                                int i;
                                                for (i = 0; i < 5; i++) {
                                                    printf("%d ", my_array[i]);
                                                return 0;
```





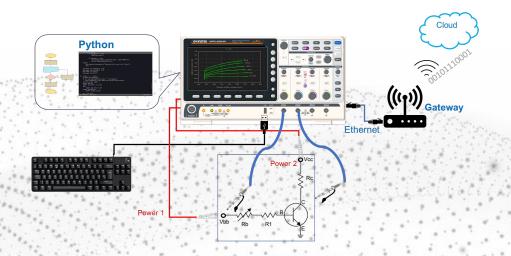


Web Edit

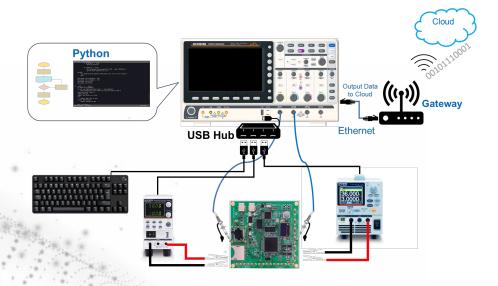

```
MicroPython Editor
                                                                                                                                        Q Q 🖟 🐞 💥 🥞 🥞 🔭 Na 🖈 🔲 S (更新 :)
← → C 介 ▲ 不安全 | 172.16.5.234:10180
                     1 import serial
                                                                                                                                     RUN Reconnect
    U refresh
                        import time
                     3 import gc
    : Disk/
                     5 INST_NAME = 'DMM' #Instrument name
   New folder...
                     6 PWR_NUM = 1
                        valV = 1
                     9 def GDS_SET_PWR_OUTPUT(dso, num, onoff):
test led pwr lvgl.py
                            cmdstr = ':POWERSupply:OUTPut%d %s\n' % (num, onoff)
                            dso.write(cmdstr)
    New file...
                    12 def GDS_SET_PWR_V(dso, num, value):
                            cmdstr = ':POWERSupply:OUTPut%d:VOLTage %f\n' % (num, value)
   Remove file
                            dso.write(cmdstr)
     Upload
                    16 - if
                            __name__ == '__main___':
                            import sys
    Download
                            sys.path.reverse()
send_line.py
                                 import gds_info as gds
                            except ImportError:
WebREPL Start.py
                                import dso2ke plus as gds
                            import dso gui as draw
test.py
                            import dso colors as color
WebIDE Start.py
                            d = gds.Dso()
                            d.connect()
abc.py
                            size = gds.Screen()
                            gds_color = gds.Theme()
decode.json
                            draw =draw.Draw_Widget()
test_led_pwr_lvgl.py
                            draw.draw_fillrect_ex(0,0,size.width-1,size.height-1,gds_color.bg_color)
                            draw.draw_rect_ex(0,0,size.width-1,size.height-1,gds_color.grid_color)
                            draw_v_i = draw.Draw_A_B(120, 50, 630, 350)
                            draw_v_i.set_style_xy(str_color=gds_color.text_color)
                            draw v i.add a b data(data color=color.GREEN)
                            draw.draw_text(130, 55, "(mA)", color=gds_color.text_color)
draw.draw_text(110+630-20, 50+350-25, "(V)", color=gds_color.text_color)
```


On Screen Edit

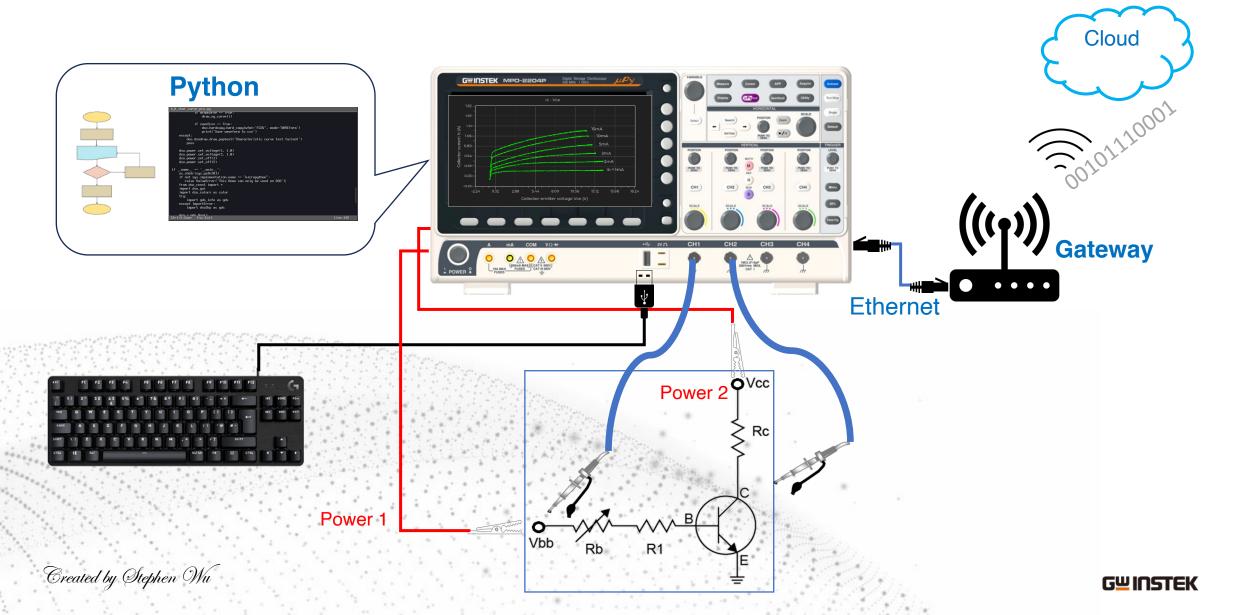

```
bjt_char_curve_pro.pq
             IT grawcurve == True:
                draw_xy_curve(i)
            if save2csv == True:
                dso.hardcopy.hard_copy(wfmt='FCSV', mode='WAVEform')
                print('Save waveform to csv')
    except:
        dso.dsodraw.draw_poptext('Characteristic curve test failed!')
    dso.power.set_voltage(1, 1.0)
    dso.power.set_voltage(2, 1.0)
    dso.power.set_off(1)
    dso.power.set_off(2)
if __name__ == '__main__':
    os.chdir(sys.path[0])
    if not sys.implementation.name == "micropython":
       raise ValueError('This Demo can only be used on DSO')
    from dso_const import *
    import dso_qui
    import dso_colors as color
    try:
        import qds_info as qds
    except ImportError:
        import dso2kp as gds
    dso = ads Dso()
                                                                                       Line:142
Ctrl+S:Save
```

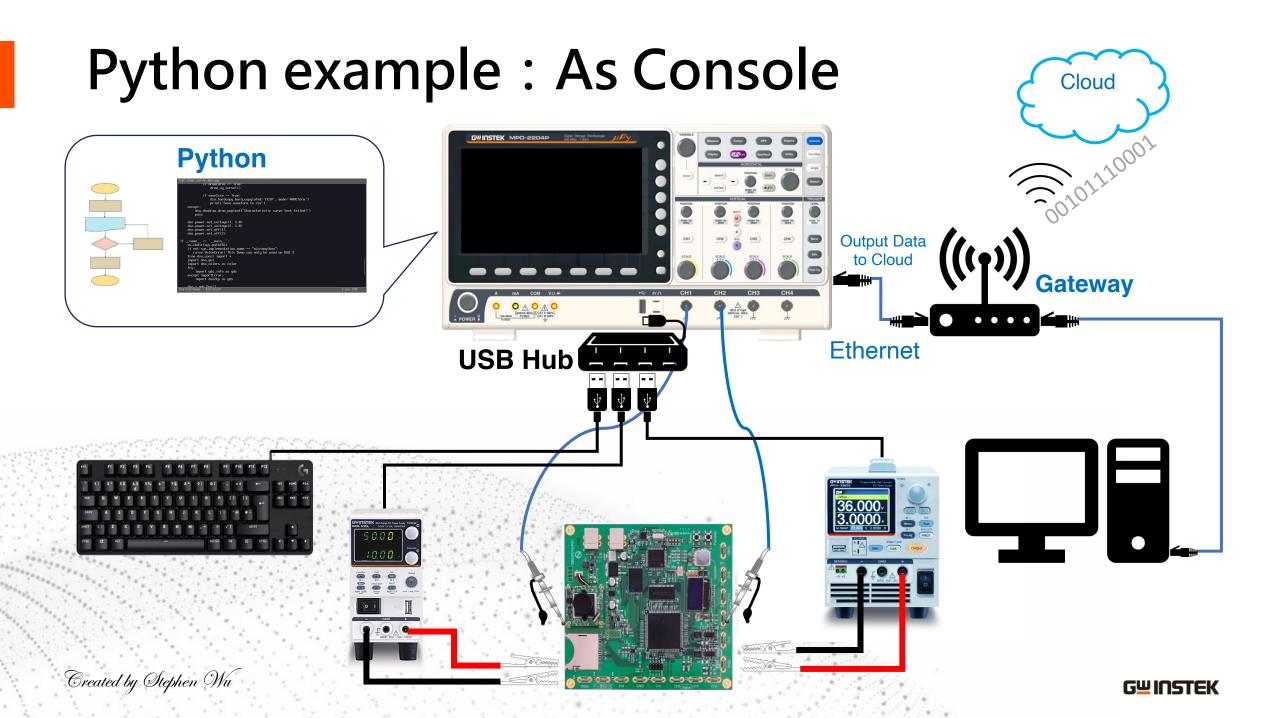



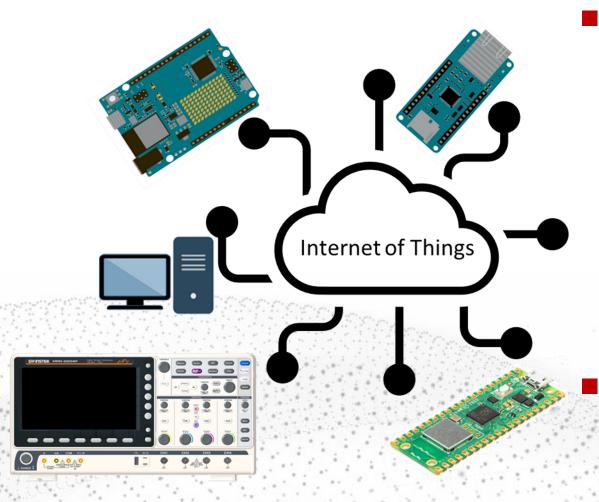
Saving time & cost


Time is Money

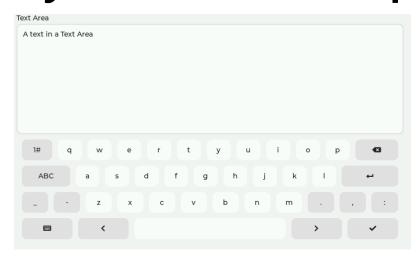
Simplify routine or complex measurement tasks Stand alone auto-measurement

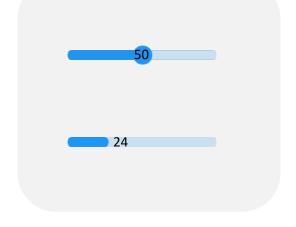

Money is Money


You don't need PLC or PC to configure test system. As Console: Control other instruments

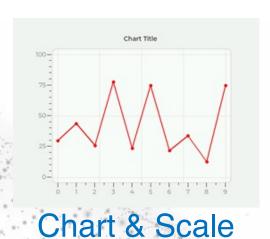

Python example: Stand Along Auto-measurement

Data availability


- Message Queuing Telemetry
 Transport is supported which
 including the "Publish" and
 "Subscribe" pattern.
 - Publish: submit measurement data to cloud.
 - Subscribe : Cloud remote control MPO.
- Data availability
 - IoT applications
 - IoT lab. course



Python GUI (Graphical User Interface)



Text Input

Lab. Asset	Oscilloscope	DMM	Function Generator
Quantity	25	25	25
Unit Price	1000	200	400
Total	25000	5000	10000

Table

Slider

Message

Buttons

Innovative Function **Diversity Application**

DSO · AWG · DMM · Power Supply Spectrum Analysis

Beyond Your Imagination

MPO-2000 Multi-function Programmable Oscilloscope

Bandwidth

Record Length Analog Channels Sample Rate

Waveform Update Rate

Up to **200** MHz **10** M points

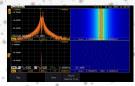
Up to **1** GS/s Up to **120,000** Waveform/s

- LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- **Barcode Scanner Measurement Applications**
- **BJT Output Characteristics Curve**
- Fuse Endurance Test 4.
- LED Forward Voltage Characteristics Curve

DSO · AWG · DMM · Power Supply Spectrum Analysis

Digital **S**torage Oscilloscope

100MHz(Basic) 200MHz(Professional)



5V~10V/0.5A; 10V~20V/0.25A

Digital Multi-Meter

5000 counts 50mV, 500mV. 5V, 50V, 500V, 1000V 6 ranges

Dual Channel Spectrum Analysis

Same Channel cloud upgrade from Basic I to Professional

MPO-2102B/2104B (Basic version)

CAN-FD/USB 2.0 (FS) Decode

Program memory space: 1M Python could access 1000 pts of waveform data length.

Oscilloscope bandwidth: 100MHz

Python API for DSO/SA/AWG/DMM/PWR Running above 5 preload Python APPs. Third-party Python APPs executable. Running Python source code (.py file) from internal disk or USB flash disk. Ethernet socket protocol Edit Method: Web or On-screen editor Could run Packaged USB CDC or GUI APPs

MPO-2202P/2204P (Professional)

Support USB CDC device control (E.g. PSW/ PFR/PPX)

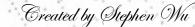
Support Python GUI library Support USB Keyboard, mouse, scanner

CAN-FD/USB 2.0(FS)

or GUI APPs

Additional FlexRay/USB-PD/ I2S Decode

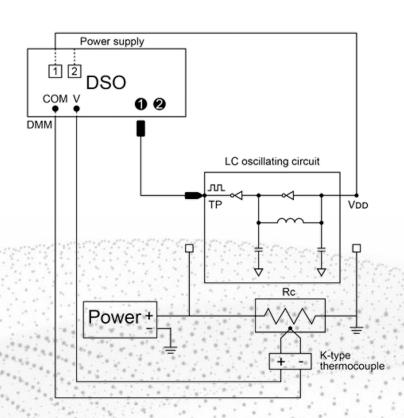
Program memory space: 20M

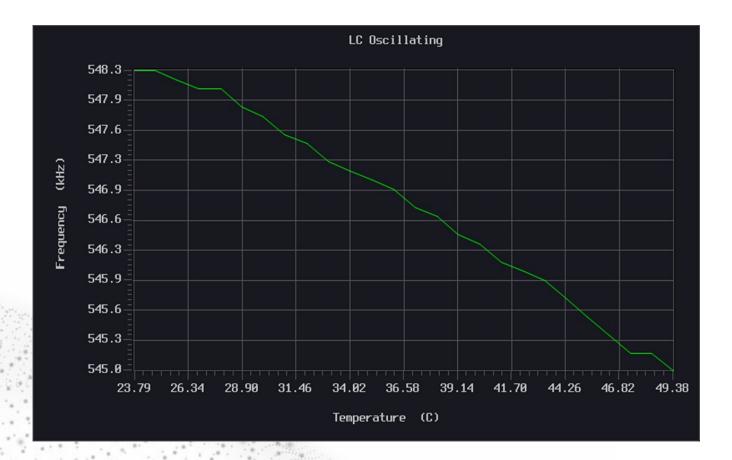

Python could access **100k** pts of waveform

data length. 100 times of Basic

Oscilloscope bandwidth: 200MHz

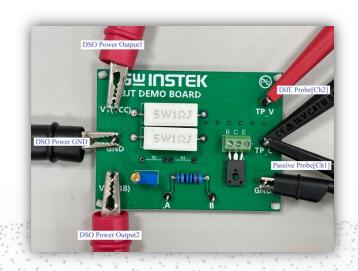
Could Package Python program to MPO-**Python APP**

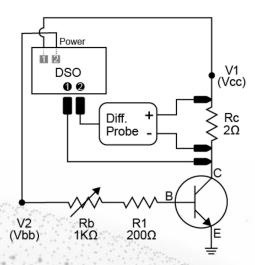

Python API for DSO/SA/AWG/DMM/PWR Running above 5 preload Python APPs. Third-party Python APPs executable. Running Python source code (.py file) from internal disk or USB flash disk. Ethernet socket protocol Edit Method: Web or On-screen editor Could run and **develop** Packaged USB CDC

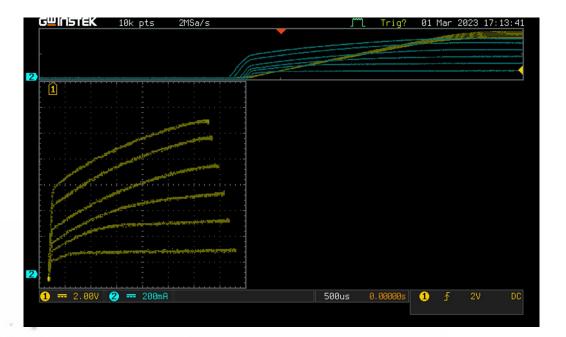


- . LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- 2. Barcode Scanner Measurement Applications
- 3. BJT Output Characteristics Curve
- 4. Fuse Endurance Test
- 5. LED Forward Voltage Characteristics Curve

- . LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- 2. Barcode Scanner Measurement Applications
- 3. BJT Output Characteristics Curve
- 4. Fuse Endurance Test
- 5. LED Forward Voltage Characteristics Curve

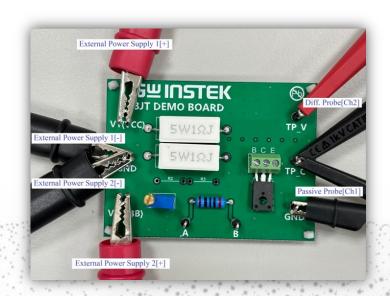


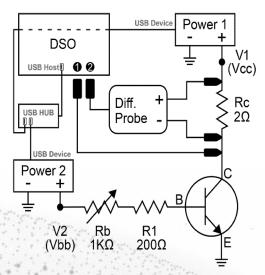




- . LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- 2. Barcode Scanner Measurement Applications
- 3. BJT Output Characteristics Curve
- 1. Fuse Endurance Test
- 5. LED Forward Voltage Characteristics Curve

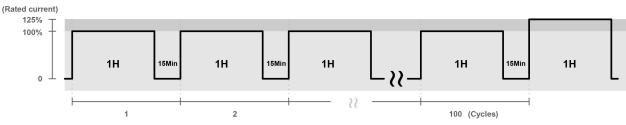
MPO2102B (Basic version) result
Using MPO internal two channel power supply

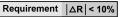




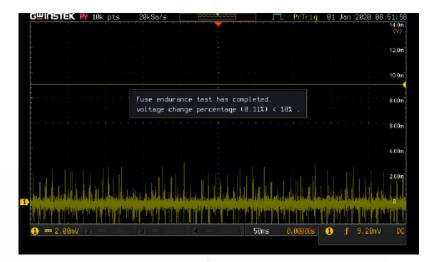
- . LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- 2. Barcode Scanner Measurement Applications
- BJT Output Characteristics Curve
- I. Fuse Endurance Test
- 5. LED Forward Voltage Characteristics Curve

MPO2202P (Professional version) GUI library result Using MPO control external power supply

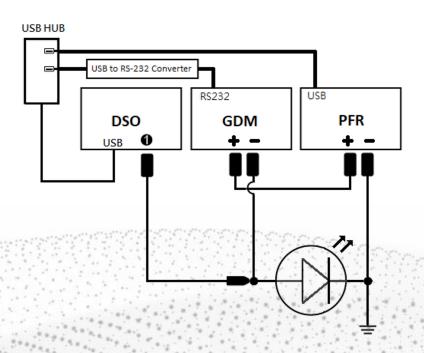


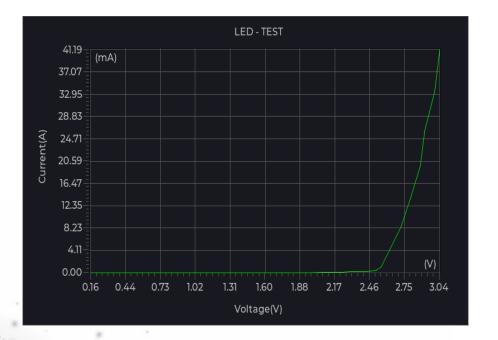


- . LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- Barcode Scanner Measurement Applications
- BJT Output Characteristics Curve
- 4. Fuse Endurance Test
- LED Forward Voltage Characteristics Curve



Python Script Workflow


- 1. Load parameter configuration file.
- Perform the initial setup for MPO-2000 and external power supply (e.g., PFR-100M).
- 3. Execute the fuse endurance testing script
- 4. Verify whether the voltage difference before and after the test procedure has changed by less than 10%.



- LC Oscillator Circuit Frequency and Temperature Characteristics Curve
- Barcode Scanner Measurement Applications
- BJT Output Characteristics Curve
- Fuse Endurance Test
 LED Forward Voltage Characteristics Curve

Innovative Function **Diversity Application**

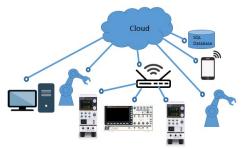
DSO · AWG · DMM · Power Supply Spectrum Analysis

Beyond Your Imagination

MPO-2000 Multi-function Programmable Oscilloscope

Bandwidth

Record Length Analog Channels Sample Rate


Waveform Update Rate

Up to **200** MHz **10** M points

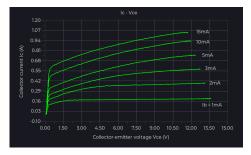
Up to **1** GS/s Up to **120,000** Waveform/s

1 Python Script Execution

Maximum number of installable python APPs: 100 sets (including pre-installed Python APPs) Running Python source code (.py file) from internal disk or USB flash disk.

4 Serial Bus decode

Basic version: CAN-FD · USB2.0(Full Speed)
Professional version: Plus FlexRay · I²S · USB-PD



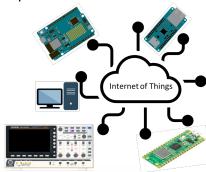
2 Component Tester I-V curve

Providing I-V characteristic curve (Curve Tracer) with readout scale.

5 Spectrogram

Dual Channel Spectrum Analysis with Spectrogram

6 Support Python GUI Library


Professional version only

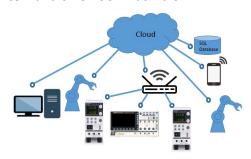
Innovative Function Extend Diversity Application

3 Support MQTT Protocol

Message Queuing Telemetry Transport is supported which including the "Publish" and "Subscribe" pattern.

Support USB CDC-ACM, USB HID Protocol (Professional version only)

PEL-3031AE PFR-100L



1 Python Script Execution

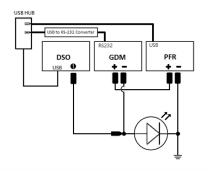
Maximum number of installable python APPs: 100 sets (including pre-installed Python APPs) Running Python source code (.py file) from internal disk or USB flash disk.

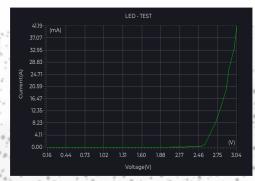
DUT: Maxwell 3.0V 3F super capacitor

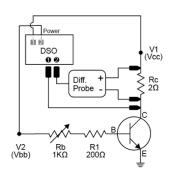
```
Use Ctrl-D to exit, Ctrl-E for paste mode
>>> import math
>>> t=261
>>> r=100
>>> v=2.01
>>> e=3.3
>>> c=-t/(r*math.log(1-v/e))
>>> print(c)
2.778723389239062
```

Innovative Function Extend Diversity Application

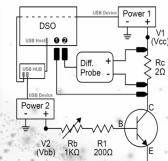
- Edge Computing don't need local PC for advanced computing
 - Example : RC circuit charging formula

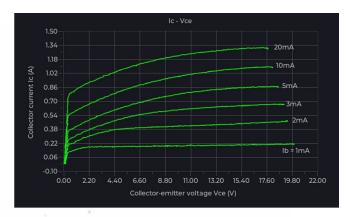

$$V(t) = E \times (1-e^{-t/(R \times C)})$$

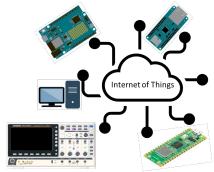

- ■Benefit:
 - Cost saving
 - Increasing productivities.

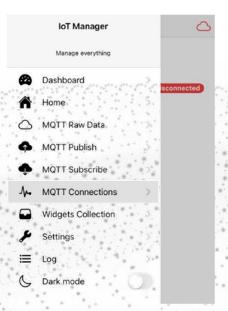

2 Component Tester I-V curve

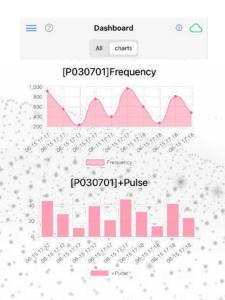
Providing I-V characteristic curve (Curve Tracer) with readout scale.









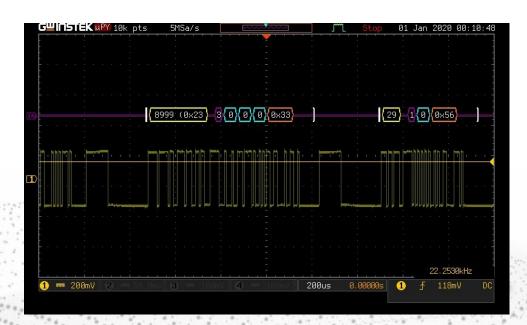


3 Support MQTT Protocol

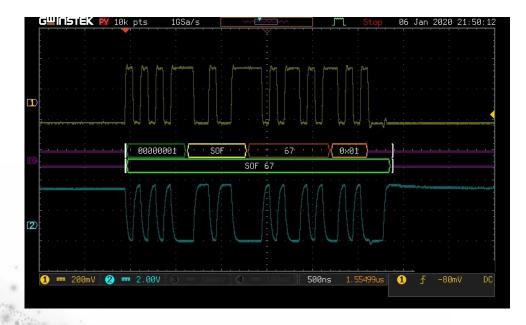
Message Queuing Telemetry Transport is supported which including the "Publish" and "Subscribe" pattern.

Innovative Function Extend Diversity Application

- Message Queuing Telemetry Transport is supported which including the "Publish" and "Subscribe" pattern.
 - Publish: submit measurement data to cloud.
 - Subscribe : Cloud remote control
 MPO.
- Data availability
 - IoT applications
 - IoT lab. course


4 Serial Bus decode

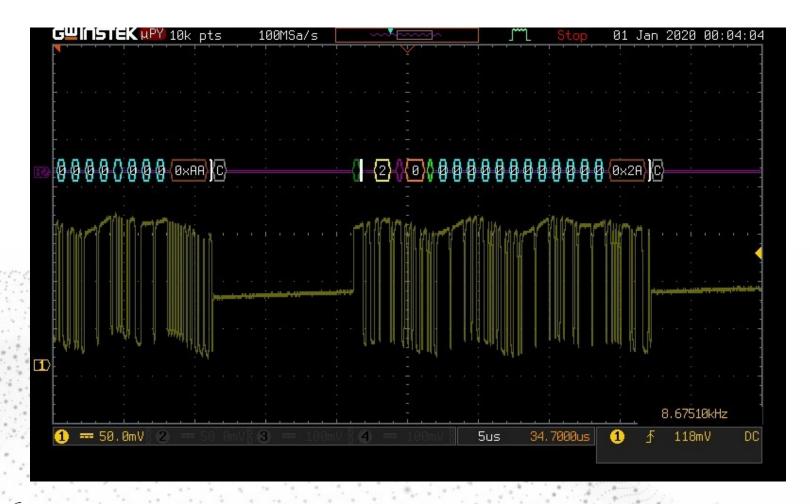
Basic version : CAN-FD \ USB2.0(Full Speed)
Professional version : Plus FlexRay \ I^2S \ USB-PD


CAN

CAN-FD decode result

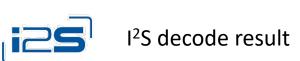
USB2.0(Full Speed) decode result

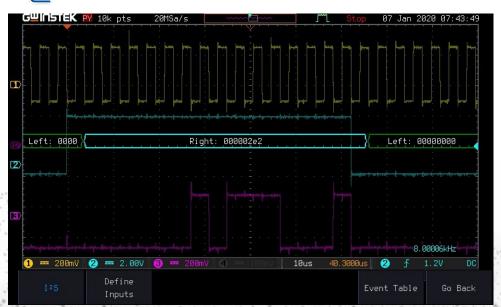
MPO-2000B/P Basic version & Professional version



4 Serial Bus decode

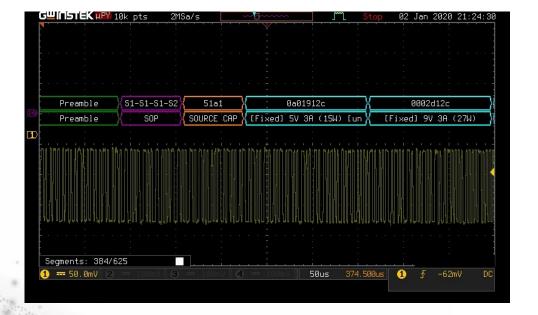
Basic version : CAN-FD \ USB2.0(Full Speed)
Professional version : Plus FlexRay \ I^2S \ USB-PD



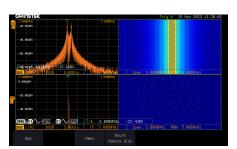


4 Serial Bus decode

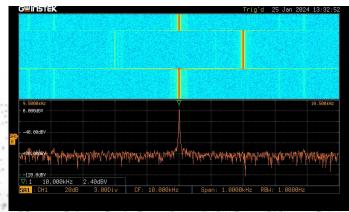
Basic version : CAN-FD \ USB2.0(Full Speed)
Professional version : Plus FlexRay \ I^2S \ USB-PD



USB2.0 PD decode result



5 Spectrogram


Dual Channel Spectrum

Analysis with

Spectrogram

Modulation domain analysis (time v.s frequency)

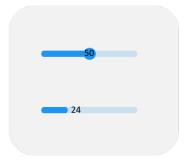
Innovative Function Extend Diversity Application

- Span : $1kHz\sim500MHz$ (Max.)
- Resolution Bandwidth : 1Hz~500kHz (Max.)
- Applications
 - Modulation domain analysis (time v.s frequency)
 - Low Frequency ~ VHF wireless communication.
 - Audio Frequency or Supersonic detection
 - Vibration analysis (mechanical resonance)
- Near field antenna is optional

6 Support Python GUI Library

Professional version only

- ★ Professional version could develop and packaging Python GUI library.
- ★ Basic version support running Packaged Python GUI APP



Text Input

Lab. Asset	Oscilloscope	DMM	Function Generator
Quantity	25	25	25
Unit Price	1000	200	400
Total	25000	5000	10000

Table

Slider

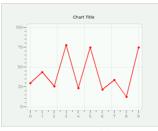
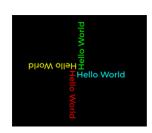



Chart & Scale

Message

Buttons

7 Support USB CDC-ACM, USB

HID Protocol (Professional version only)

Innovative Function Extend Diversity Application

USB Host could control other USB equipment (USB CDC-ACM protocol) like following products.

Power: PSW \ PPX \ PFR \ ASR-3000

DMM : GDM-8261A

Load : PEL-3000AE

- USB Host could control USB peripherals (USB HID protocol equipment, like keyboard/mouse/bar code scanner)
- ★ Professional version could develop above USB scripts.
- ★ Basic version support running above USB Python APP

Educational Application

- It Reduces The Time Required for Students to Conduct Electronic Experiments (Course packaging design is required).
- Measurement Automation Tutorial (Python Programming)
- MQTT Publisher / Subscriber (IoT Course)

Industrial Application

- Small-scale AutomatedTesting (Production Lines)
- Component Durability
 Testing (Quality Assurance)
- Engineers Automate Data
 Collection and Testing (R&D)

Specifications (1)

MPO-2000 series Specifications

WPO-2000 series specifications				
	MPO-2102B	MPO-2104B	MPO-2202P	MPO-2204P
Channels	2ch+Ext	4ch	2ch+Ext	4ch
Bandwidth	DC~100MHz	DC~100MHz	DC~200MHz	DC~200MHz
Balluwidtii	(-3dB)	(-3dB)	(-3dB)	(-3dB)
Rise time(Calculated)	3.5ns	3.5ns	1.75ns	1.75ns
Bandwidth Limit	20MHz	20MHz	20M/100MHz	20M/100MHz
Python Script Execution (μPy)	Basic version	Basic version	Professional version	Professional version
Vertical Sensitivity				
Resolution	8 bit			
Resolution	1mV~10V/div			

Resolution	8 bit			
	1mV~10V/div			
Input Coupling	AC, DC, GND			
Input Impedance	$1M\Omega//\ 16pF\ approx.$			
DC Gain Accuracy	±(3%)when 2mV/div or greater is selected			
	±(5%)when 1mV/div is selected;			
Polarity	Normal & Invert			
Maximum Input Voltage	300Vrms, CAT I			
	1mV/div ~ 20mV/div : ±0.5V			
or	50mV/div ~ 200mV/div : ±5V			

50mV/div ~ 200mV/div : ±5V 500mV/div ~ 2V/div : ±25V 5V~10V/div : ±250V

Waveform Signal Process $+, -, \times, \div$, FFT, User Defined Expression.

FFT: Spectral magnitude. Set FFT Vertical Scale to Linear RMS or dBV RMS, and FFT Window to Rectangular, Hamming, Hanning, or Blackman.

Specifications (2)

Trigger			
1118801	CH1 ,CH2, CH3*, CH4*, Line, EXT**		
Source	* four channel models only **dual channel models only		
Trigger Mode	Auto (supports Roll Mode for 100 ms/div and slower), Normal, Single		
	Edge, Pulse Width(Glitch), Video, Pulse Runt, Rise & Fall(Slope), Alternate, time out, Event-Delay(1~65535 events), Time-Delay(Duration,4ns~10s),		
Trigger Type	Bus (UART,I ² C, SPI*, CAN, LIN) *This bus decoder is only available on 4 channel models.		
Holdoff range	4ns~10s		
Coupling	AC,DC,LF rej. ,HF rej. ,Noise rej.		
Sensitivity	1div		
External Trigger			
Range	±15V		
Sensitivity	DC ~ 100MHz Approx. 100mV		
•	100MHz ~ 200MHz Approx. 150mV		
Input Impedance	1MΩ±3%~16pF		
Horizontal			
Time base Range	1ns/div ~ 100s/div (1-2-5 increments)		
	ROLL: 100ms/div ~ 100s/div		
Pre-trigger	10 div maximum		
Post-trigger	2,000,000 div maximum.		
Time base Accuracy	±50 ppm over any ≥ 1 ms time interval		
Real Time Sample Rate	Max.:1GSa/s (4ch models)		
Real Time Sample Rate	Per channel 1GSa/s (2ch models)		
Record Length	Max. 10M pts		
Acquisition Mode	Normal, Average, Peak Detect, Single		
Peak Detection	2ns (typical)		
Average	selectable from 2 to 512		
A STATE OF THE PARTY OF THE PAR	The same of the sa		

Specifications (3)

AWG Specifications			
Channels	2		
Sample Rate	200 M sa/s		
Vertical Resolution	14 bits		
Max. Frequency	25 MHz		
Waveforms	Arbitrary, Sine, Square, Pulse, Ramp, DC, Noise, Sinc, Gaussian, Lorentz, Exponential Rise, Exponential Fall, Haversine, Cardiac		
Output Range	20 mVpp to 5 Vpp, HighZ;10 mVpp to 2.5 Vpp, 50 Ω		
Output Resolution	1mV		
Output Accuracy	2% (1 kHz)		
Offset Range	±2.5V, High Z; ±1.25V, 50 Ω		
Offset Resolution	1mV		
	Sine		
Frequency Range	100mHz to 25MHz		
Flatness (relative to 1 kHz)	±0.5 dB<15MHz ±1dB 15MHz~25MHz		
Harmonic Distortion	-40 dBc		
Stray (Non-harmonic)	-40 dBc		
Total Harmonic Distortion	1%		
S/N Ratio	40 dB		
	Square/Pulse		
Frequency Range	100 mHz to 15MHz		
Rise/Fall time	<15ns		
Overshoot	<3%		
Duty cycle	Square:50%; Pulse:0.4%~99.6%		
Min. Pulse Width	30 ns		
Jitter	500 ps		
	Ramp		
Frequency Range	100mHz~1MHz		
Linearity	1%		
Symmetry	0 to 100%		

Specifications (4)

Reading	5,000 counts		
	CAT II 600Vrms, CAT III 300Vrms		
Voltage Input	Below are the basic conditions required to operate the DMM within specifications:		
	*Calibration: Yearly. *Operating Temperature Specification: 18~28°C (64.4~82.4°F). *Relative humidity: 80%. (Non condensing)		
	*Accuracy: ± (% of Reading + % of Range).		
	*AC measurement are based on a 50% duty cycle.		
DC VOLTAGE	50mV, 500mV, 5V, 50V, 500V, 1000V 6 ranges		
Accuracy	50mV, 500mV, 5V, 50V, 500V, 1000V ±(0.1% +0.1%)		
Input Impedance	10ΜΩ		
DC CURRENT	50mA, 500mA, 10A 3 ranges		
Accuracy	50mA - 500mA ±(0.5% + 0.1%) 10A ±(0.5% + 0.5%)		
AC VOLTAGE	50mV, 500mV, 5V, 50V, 700V 5 ranges		
Accuracy	50mV, 500mV, 5V, 50V, 700V ±(1.5% +1.5%) at 50Hz-1kHz		
AC CURRENT	50mA, 500mA, 10A 3 ranges		
Accuracy*	50mA, 500mA, ±(1.5% + 0.1%) at 50Hz-1kHz 10A ±(3% +0.5%) at 50Hz-1kHz * Measure range: >10mA		
RESISTANCE	500Ω , 5 k Ω , 50 k Ω , 500 k Ω , 5 M Ω , 5 ranges		
Accuracy*	500Ω , $5k\Omega$, $50k\Omega$, $500k\Omega$, $5M\Omega$: $\pm(0.3\% + 0.01\%)$ *Measure range: 50Ω to $5M\Omega$		
Diode Test	Maximum forward voltage 1.5V, Open voltage 2.8V		
Temperature (Thermocouple)*	Range: -50°C ~ + 1000°C Resolution: 0.1°C * Specifications do not include probe accuracy.		
Continuity Beeper	15 Ω		

Specifications (5)

Power supply Specifications

- one supply openious			
Output Channel	CH1 & CH2		
Output range	1V~5V/1A; 5V~10V/0.5A; 10V~20V/0.25A*		
	Peak current: 1A @250ms		
Voltage Step	0.1V Continuously Adjustable		
Output Voltage Accuracy	±3%		
Ripple and Noise	50mVrms		

Specifications (6)

Frequency range	DC~500MHz Max., dual channel with spectrogram (based on Advanced FFT). Notice: Frequency which exceeds analog front end bandwidth is uncalibrated)		
Span	1kHz~500MHz(Max.)		
Resolution bandwidth	1Hz ~ 500kHz(Max.)		
Reference level	-50 dBm to +40dBm in steps of 5dBm		
Vertical units	dBV RMS; Linear RMS; dBm		
Vertical position	-12divs to +12divs		
Vertical scale	1dB/div to 20dB/div in a 1-2-5 Sequence		
Display average noise level	1V/div < -50dBm, Avg : 16 100mV/div < -70dBm, Avg : 16 10mV/div < -90dBm, Avg : 16		
Spurious response	2nd harmonic distortion< 40dBc 3rd harmonic distortion< 45dBc		
Frequency domain trace types	Normal ; Max Hold ; Min Hold ; Average (2 ~ 512)		
Detection methods	Sample ; +Peak ; -Peak ; Average		
FFT Windows	FFT Factor :		
	Hanning 1.44		
	Rectangular 0.89		
	Hamming 1.30 Blackman 1.68		
	DIAGNITATI 1.00		

Order information

- MPO-2204P 200MHz, 4-channel, Digital Storage Oscilloscope, Spectrum analyzer, dual channel 25MHz AWG, 5,000 counts DMM and power supply
- MPO-2202P 200MHz, 2-channel, Digital Storage Oscilloscope, Spectrum analyzer, dual channel 25MHz AWG, 5,000 counts DMM and power supply
- MPO-2104B 100MHz, 4-channel, Digital Storage Oscilloscope, Spectrum analyzer, dual channel 25MHz AWG, 5,000counts DMM and power supply
- MPO-2102B 100MHz, 2-channel, Digital Storage Oscilloscope, Spectrum analyzer, dual channel 25MHz AWG, 5,000 counts DMM and power supply
- EAN code:

_	Model name Part No.	EAN-13 code	
_	MPO-2204P (CE)	01MP224P00GS	4711458120757
_	MPO-2202P (CE)	01MP222P00GS	4711458120740
_	MPO-2104B (CE)	01MP214B00GS	4711458120733
_	MPO-2102B (CE)	01MP212B00GS	4711458120726

- Standard Accessories
 - Power Cord, Certificate of Calibration,
 - Passive probe (one probe per channel)
 - GTL-110 BNC-BNC cable*2
 - GTL-105A Alligator Clip test lead
 - GTL-207 Banana plug test lead
- Optior
 - MP2-PRO: Basic version upgrade to Professional version Part No:11MP-2PRO0C01
- Free Download
 - OpenWave software; LabVIEW driver

Facebook

LinkedIn

Website

